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FREEZING OF DROPS ON COOLED SURFACES 

A. V. Klimenko and M. Yu. Kolosov UDC 533.6.017 

The authors consider an approximate analytical solution of the problem of freezing 
of liquid drops on the cold surface of a semiinfinite body and a thin plate. 

Freezing of liquid drops on a cooled substrate occurs in a number of contemporary and 
future technologies, e.g., cryodispersion technology, cryostorage of biological items in 
granules, and in the application of a controlled charged flux of solder drops to an elec- 
tronic plate. In numerous applications it is important to know such characteristics of the 
freezing process as the crystallization time or the freezing rate and the temperature field 
in the drop during the freezing process. 

The problem is formulated in these cases as follows. A drop in the form of a semi- 
ellipsoid of revolution is located on a cooled surface with temperature T at the initial 
time T = 0. This drop shape is the closest to the shape of granules obtained in existing 
technologies (Fig. I). In most cases one can consider that the free part of the substrate 
and the curved surface of the drop are thermally insulated and all the heat from the drop 
is transferred to the substrate by heat conduction; there is no contact resistance between 
the drop and the substrate, and the initial temperature of the drop is the crystallization 
temperature (Fig. 2). 

The temperature fields of the frozen part of the drop and in the substrate are described 
by the unsteady heat-conduction equations: 

z>=0, a@d --A~; (i) 
a Fod 
a@s 

z <  = 0, - Aos; 
8 Fo s (2) 

F ~ = 0 ,  @ d = l ,  @ s = 0 .  

The t e m p e r a t u r e  f i e l d s  a t  t h e  d r o p - s u b s t r a t e  b o u n d a r y  a r e  l i n k e d  by t h e  u s u a l  c o n j u g a t e  con-  
d i t i o n s :  

O s = O d, ( 3 )  

( ~ - ~ )  gradO s = gradO d. (4) 

At the crystallization front in the drop we have the condition 

On 
r -  

OOd -- 0 F ~  (5)  
On [Cd(Tcr -- T~)] " 

It is scarcely possible to obtain an exact analytical solution of the Stefan problem of Eqs. 
(1).-(5) in the coupled form. 

In [i] we proposed an approximate analytical method of solving this problem, based on 
introducing a curvilinear orthogonal coordinate system conforming to the shape of the object 
being analyzed. 
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Fig.  2 

Fig .  1. C h a r a c t e r i s t i c  shape of  a g ranu le  ob ta ined  by f r e e z i n g  of a drop of  wate r  on a 
cooled substrate (R = 5 nun). 

Fig. 2. Schematic of the process of freezing of a liquid drop on a surface: I) semiinfinite 
body; 2) thin plate. 

In the case examined, for an ellipsoidal drop, such a coordinate system is given by the 
equations: 

y2+x2 
z ~ + --q--- = 1, (6>  

zz.Qy2_i_xZ_q2+21n ( - ~ ) =  1. (7) 

Figure 3 shows a photograph of a water drop cut in half prior to the end of the solidifica- 
tion. The shape of the crystallization front thus recorded agrees well with isotherms com- 
puted from Eq. (7). This indicates that the choice of the coordinate system is well founded. 

Temperature Field of the Solidified Part of the Drop. Since the position of the iso- 
therms is given by Eq. (7), subsequent analysis can limit the search for a solution for x = 0 
and y = 0, i.e., i,e., for the central axis of the drop, taking into account that in the gen- 
eral case ~ § z. 

Using the classical quasisteady approximation, which is most correct for the cases 
a d ~ a s and r/[Cd(T d - Ts) ] ~ i, for the solidified part of the drop we have 

O<~z~-~l, 020d + 2 z  OOd --0. (8) 
Oz z P--t Oz 

Fig. 3, Photograph of a water 
drop cut in half prior to the 
end of solidification (the un- 
frogen liquid during the crys- 
tallization was quickly removed 
using a pipette). 
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The boundary conditions are evidently: z=l, Od=l; z=0, O d =Os(Fos, 0). The solution of Eq. (8) 

has the form 

in [(1 + z)f(l -- z)] + Os (F%, 0). (9) 
Od(FO s, z) ---- (1 - -O(Fo s, 0)) ln[(1 +/) / (1-- / )1  

Temperature Field in the Substrate. i. Semiinfinite Body. To describe the temperature 
field we used the two-dimensional unsteady equation of heat conduction in cylindrical coor- 
dinates [i]. Solutions were obtained for the two cases of ratios of thermal diffusivities 

a d and as: 

a) a d >> a s . 

The temperature of the substrate surface under the drops is 

Os(Fos, O)~l- - - -s  [erfc2_g_F_~ + 1  ~ 1  J]' (i0) 

where 

h = 2 ~ . ~  ( 1 1 )  
Zsb m [0  + 0/(1 - -  t)l 

The position of the crystallization front as a function of time is 

f erfc 1 dFos_t - 2 l/pTs_ - r P d ~ a  s ( l - -  . (12) 
2 VP-----~,.s ~ RLd(Ter -- T.) 

b) ad(< as, 
The substrate temperature under the drop in this case can be considered constant: 

O~ = 0. (13) 

The position of the crystallization front as a function of time is 

F ~  2Cd(Tr--T~)II(1---~--2) l n l + / ,  1 - - I  2 ~ 1  + - f -  In (1 --  Z 2) . . . .  . (14) 

We now compare the limiting cases of Eqs. (12) and (14) for computing the solidification 
time of a liquid drop on a cooled surface with the exact solution of Shvartz problem [2] of 
solidification of a semiinfinite volume of liquid with initial temperature T = Tcr on a semi- 
infinite solid body having temperature T~: 

= , (15) 
%d ~s + %sMad err (~) c d (Tcr-- T.) 

where 

l 1 
--- 2 ]/-~dT,cr -- 2 ~  d " (16) 

It is evident that when R + ~ the drops degenerate into a planar layer of height b. 
Then for the limiting case a d >> a s we obtain the total crystallization time of the layer of 
thickness b: 

Fo d ad~cr ~ zc 
b ~ 9 

( rpd 2 
---ada s ~s(Ter__T=) ) �9 (17) 

(15) for  a d ~ a s wi th  Fo d ~ 1 takes  the  form The solution of the Shvartz problem of Eq. 

~ adas ( rPd 12 
F~ - ~s(Ter--T~) , " (18) 

For the limiting case a d ~ a s Eq. (14) is rewritten in the form 

r 

Foal= 0,3 c d(Ter.-- T~) (19) 

For CdP d = Cs9 s and Fo d ~ 1, t ak ing  i n t o  account  J ( a d ) / a  s ~ 1, we o b t a i n  from Eq. (15) 

1 r ( 2 0 )  

F%= 2 cd(~r--T~) 
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The results of comparing the expressions obtained for a d >> a s , Eqs. (17) and (18), and 
for a d << as, Eqs. (19) and (20), show that they differ only in the numerical coefficients. 
This satisfactory agreement validates our approach to solving the problem of solidification 
of the liquid drop. Regarding the differences of the numerical coefficients, they are ex- 
plained by the fact that in our drop problem we have a finite volume, and not a semiinfinite 
one, and in addition, the drop surface is thermally insulated. This leads to the fact that 
as R § ~ the shape of the isotherms remains curvilinear, in contrast with the planar iso- 
therms for solidification of a semiinfinite layer of liquid. 

It should be noted that one should obtain perfect agreement of the solutions considered 
at small L, as can easily be shown. 

2. Plate of Thickness L' << R. We shall examine in more detail the solution for this 
case. For the temperature field in the plate we have 

0Z@s.~ 1 0Os ~ 0zO,s _ 0 O s  (21)  
092 p Op Oz~ 0 Fos 

The boundary conditions are analogous to those of the previous case, except for the condi- 
tion at the lower surface of the plate, where we assign boundary conditions of the first 
kind: 

z o = L ,  0 s = O ;  (22)  

0Os 
z o = 0  , , o > 1 ,  - -0 ;  (23)  

Ozo 

p ~ I , - - 0 Q s  = h ( O s - - l ) .  (24)  
Oz o 

Thus ,  f o r  t h e  s u b s t r a t e  we have  a b o u n d a r y  p r o b l e m  of  u n s t e a d y  h e a t  c o n d u c t i o n  w i t h  
inhomogeneous  mixed bounda ry  c o n d i t i o n s ,  i . e . ,  on t h e  top  s u r f a c e  o f  t h e  p l a t e  t h e  h e a t  f rom 
t h e  d rop  i s  s u p p l i e d  t h r o u g h  a c i r c l e  o f  r a d i u s  R, and t h e  r e s t  o f  t h e  s u r f a c e  i s  t h e r m a l l y  
i n s u l a t e d .  

We r e p r e s e n t  t h e  d e s i r e d  s o l u t i o n  @s(9, zp, Fos) in  t h e  form of  t h e  sum ( f o r  0 < 1) 

Os(9, z 0, Fo s ) = W ( p ,  z 0, Fo s ) + U ( %  Fos), (25)  

where  t h e  f u n c t i o n  V(z9 ,  go s )  i s  chosen  such  t h a t  i t  s a t i s f i e s  o n l y  t h e  b o u n d a r y  c o n d i t i o n s ,  
i.e., 

0U 
zp O, - ,~(U--  ~' 

Oz,, (26)  

z o = L ,  U = 0 .  

C o n d i t i o n  (26)  i s  s a t i s f i e d  by a l i n e a r  d e p e n d e n c e  o f  V on z o f  t h e  t y p e  

U (z~, Fo~ = h (L - -  z.o)/(1 q- hL). (27)  

Tak ing  a c c o u n t  o f  Eq. (26)  f rom Eq. (21)  we o b t a i n  e q u a t i o n s  f o r  d e t e r m i n i n g  W(9, z 9, 
FOs): 

01~ OU 
- - A W  - - ;  

Because of Eq. i[27) we have 

0 Fo s 0 Fo s (28)  

F o s - - 0  , W = z / L - - 1 ;  (29)  

z = O ,  OW _ h W ;  (30)  
Oz 

z = L ,  W = 0 .  (31) 

a U _ L -- z 0 0h (32) 
0Fo s  ( l q - h L )  2 0Fo  s 

If we assume that L ~ I, and in addition we take into consideration that O~z~L, for 
finite values of 8h/3Fo s we can fieglect the quantity 3U/3Fo s. Then 
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OW _ __azw + 1 __aw + __ozw (33) 

o Fos Op z p Op Oz~ 

To solve Eqs. (28)-(33) we use the method of integral transformations, successively 
applying a finite Fourier integral transformation in the variable z: 

for p > 1 
L 

Z~ dzo, ( 34 ) T(n) = .f f L 
O 

where ~---- ~ (2n--l), n---- l, 2, 3, ...; 

for p < 1 

Y(n) -=- S t (zo) - - C -  + hL sin dzo, ( 3 5 )  
O 

where Pn a r e  t h e  r o o t s  of  t h e  e q u a t i o n  

ctg I~j ---- - -  hn/l~j, 

and the Laplace transformation in the 

~L (s) = i 
0 

to Eq. (21), written for p~l and p > 

For a thin plate we have hL/~ 
tion of Eq. (21) for the region p > i 

where 
@L : hL~ 

2 (1 hL) 

For  t h e  r e g i o n  p<~l 

where 

O _ 

variable Fo s 

q~ (p, zo, Fos) exp (-- s F%) d Fo, s (36)  

i, respectively. 

I. In this case ~n = ~n = (~/2)(2n - I) and the solu- 
has the form 

~ + i ~  
2 ~ p,~z o 1 

c o s - - - -  ~( exp(sFos)@Lds, 
L 2.~ L 2rci ( 37 ) 

LZ -~- L 2 + s .  (38) �9 L z -1- s Ko - 
s ~ + s  

the solution is written in the form 

~+i~ 
h ( L - - z ~  -5 --~2 ~ cos I x n z l  

1 q-hL z.- 
exp (s FOs)W/zds , ( 39 ) o = u + w -  

)( ) -- hL 2 I 1  1 K1 1 , /  p~ WL = - -  2 , L 2 q- s X 
pn (1 + hL) s p~/L z + s 

p,, _ pn hL~ ( 40 ) 
•  p L2 -bs L2 -bs ( l + h L )  p~(p~/L z + s )  

Using tables of transforms and theorems of the Laplace integral transform [3], we can 
obtain the temperature of interest to us, at the center of the base of the drop, i.e., with 
zp = 0, 9 = 0 

O(Fos, O, 0)--  hL 2 <~ Ws ' (41) 
l+hL + T ~  

where 

2 Fo S 

hLZ exp Fo s ( - - l q - e x p ( - - 1 / 4 F o s ) ) -  ! exp Fo,s - -  
Ws = ~2 (1 q- hL) L z L z 4 ZOs 4 Fos 2 i42) 

We note that the series ~Ws rapidly converges, since 

2 2.Fos)/~i Ws N exp (-- pn/L 
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o o,2 q~ 0,6 o,~ j o 

f 

3 <- 

o,z o,~ 0,6 ,Fs r0 
Fo:cr 

Fig. 4. Change of temperature of the base of the drop during 
solidification on various surfaces: a) Teflon surface [R/b = 
i, ras/(Cd(Tcr - TL)a d) = 0.05]: i) semiinfinite body, Eq. 
(i0); 2-6) plate, Eq. (37) [2) L/R = 0.i; 3) 0.06; 4) 0.02; 5) 
0.01; 6) 0.001]; b) stainless steel plate [R/b = i; ras/(C d x 
(Tcr - TL)a d) = 1.2]: i) L/R = 0.i; 2) 0.02; 3) 0.01. 

and therefore we can restrict attention to the first term. Thus we have 

2hL exp Fos )< hL + 2 
O(Fo s, O, 0)-- l-[-hL F l ( l + h L )  L 2 

( ( )) X - - l + e x p  [ s 1 OFos - -  exp l~i Fos - -  �9 (43) 
, L z 4Fos 4 Fo~s 4 Fos o , 

Determination of the Crystallization Time. To determine the dependence of the position 
of the crystallization front in the drop on the time and the crystallization time of the drop 
we use condition (5). Taking account of Eqs. (9) and (43) we obtain 

r b2a:s (1- -P)  ln 1-[-l Ol 
1--@(F~,  O) = 2Cd(Tcr--TL) R2ad 1 - - I  OFo:s (44) 

We can solve Eq. (44) using the Picard method of successive approximations or using 
numerical methods. We use the notation 

r bZa.s 
A = ( 4 5 )  

For the first approximation we can write 

Fo~ l . . . .  A l l ( 1  @ ) l n  1--1+/t -[--~-ln(12 ~t2')--3-- l~ + 2L~d~s b ( , ' l - - ~ ) ]  . (46) 

We note that the first approximation gives a value exceeding the crystallization time of Eq. 
(14) (the limiting case a d ~ a s for a semiinfinite body) by the amount 

2A~dL ( I - -  : .  ) . (47) 
Xsb 

The increase of the crystallization time can be explained by the fact that in the given solu- 
tion one takes account of the variation of temperature of the substrate under the drop, i.e., 
the plate is an added thermal resistance in removing heat from the drop. 

Now, knowing the dependence Fo = Fo(s i.e., the position of the crystallization front 
in the drop at any time, we can compute the temperature field in the solidified part of the 
drop from Eq. (9). 

Figures 2 and 3 show computed temperatures of the base of the drop from Eq. (43) at the 
time of solidification on plates of Teflon and stainless steel of different thicknesses and 
the data obtained for a semiinfinite cooled surface. Comparison of the data shows good quali- 
tative agreement. The influence of the thermophysical properties of the plate material on the 
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Fig. 5. Dependence of the crystalli- 
zation time on the plate thickness 
from Eq. (44) (R/b = i), s = ras/ 
[cd(Tcr - TL)ad]: i, 2, 3) Teflon 
S = 1.6, 2.4, 3.1, respectively; 4, 
5, 6) stainless steel S = 0.05, 
0.07, 0.I. 

variation of drop base temperature during drop solidification is shown in Fig. 4. The drop 
base temperature during crystallization proved to be substantially lower for the plate with 
higher thermal conductivity, stainless steel. This leads to greater nonuniformity of drop 
cooling when there is solidification on these surfaces. At the moment of completion of 
crystallization the drop cooling rate is a maximum, since (T d - T s) is a maximum, and there 
is no heat release associated with crystallization in the drop. 

Figure 5 shows the computed crystallization time as a function of the plate thickness, 
from Eq. (44). Evidently for materials with higher thermal conductivity the crystallization 
time will depend less on the plate thickness, a result which we found for plates of stainless 
steel, in contrast to the Teflon plates. 

Thus, from the relation obtained we can compute the crystallization time and the tempera- 
ture field when a liquid drop solidifies on different surfaces. 

NOTATION 

a, thermal diffusivity, m2/sec; b, drop height, m; c, heat capacity, J/(kg.K); R, drop 
radius, m; s = s dimensionless coordinate of the crystallization front; ~, coordinate of 
the crystallization front, m; L = L'/R, dimensionless plate thickness; L', plate thickness, m; 
r, heat of crystallization, J/kg; n, normal to the phase transition surface; o d = (T d - TL)/ 
(Tcr - TL), @s = (Ts - TL)/(Tcr - TL), dimensionless temperatures of the drop and the sub- 
strate; T d and Ts, temperature of the drop and the substrate, K; T L, temperature of the lower 
cooled surface of the plate, K; T L = T, for a semiinfinite surface; Fo d = ad~/b2; Fo s = 
as~/R2; z = z'/b, y = y'/b, x = x'/b, dimensionless cartesian coordinates; Zp = z'/R, p = 
p'/R, dimensionless cylindrical coordinates; ~, q, curvilinear orthogonal coordinates; A, 
Laplace operator; err(x), Gauss function; ~, time, sec; ~, thermal conductivity, W/(m'K); 
p, density, kg/m 3. Subscripts: d, drop; cr, crystallization; s crystallization front; 
s, substrate. 
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